Thermoelastic Analysis of Functionally Graded Cylindrical Shells

نویسندگان

چکیده

We perform the analytic investigation of stress-strain state a functionally graded cylindrical shell finite length heated by two-dimensional temperature field. The properties material are regarded as functions thickness coordinate. In our investigations, we use equations refined theory shells that takes into account deformation transverse shear and normal deformation. heat-conduction equation is deduced under assumption linear distribution over shell. For boundary conditions simply supported shell, quasistatic uncoupled problem thermoelasticity solved methods Fourier Laplace transforms. Numerical examples presented discussed to show it important take influence inhomogeneity materials metal–ceramics composites.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of functionally graded thick cylindrical and conical shells

Thick shells have attracted much attention in recent years as intelligent and functional graded materials because of their unique properties. In this review paper, some critical issues and problems in the development of thick shells made from Functionally graded piezoelectric material (FGPM) are discussed. This review has been conducted on various types of methods which are available for thick ...

متن کامل

Vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads

In the present work, study of the vibration of a functionally graded (FG) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. Free vibration analysis is presented for FG cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. The equations of motion are derived by Hamilton...

متن کامل

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

متن کامل

vibration analysis of functionally graded cylindrical shells with different boundary conditions subjected to thermal loads

in the present work, study of the vibration of a functionally graded (fg) cylindrical shell made up of stainless steel, zirconia, and nickel is presented. free vibration analysis is presented for fg cylindrical shells with simply supported-simply supported and clamped–clamped boundary condition based on temperature independent material properties. the equations of motion are derived by hamilton...

متن کامل

Torsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation

In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2021

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-021-05287-5